您好,欢迎光临移动云婚纱定制!
新闻资讯 News

【原创论文二】| 吸收式热泵机组在直接空冷热电厂的应用

日期: 2018-05-30
浏览次数: 28
分享到:

【摘  要】本文主要介绍了利用溴化锂吸收式热泵在直接空冷热电厂成功的回收乏汽的余热,并作为热源应用于集中供热系统,满足了供热需求,取得了良好的效果,实现了节能减排

【关键词】溴化锂吸收式热泵  直接空冷热电厂  乏汽利用  集中供热


0 引言

这几年伴随着京津地区甚至全国大范围的雾霾天气,国家制定了更加严格的排放标准和煤耗指标,火电厂如今面临着更加严格的节能减排任务,如何深入挖掘电厂内的节能潜力,是摆在电力工作者面前的一项迫切任务。

汽轮机的冷源损失是火力发电中能量损失最大的一部分,在常规凝汽式火力热电厂中,汽轮机排汽在凝汽器中被循环冷却水冷却而凝结成水,同时循环冷却水将吸收的热量通过水塔散发到大气中,从而产生汽轮机冷源损失。冷源损失约占发电能量的60%左右[1],是造成火电厂循环效率低的主要原因。

本文结合某热电公司采用吸收式热泵机组回收直接空冷供热机组乏汽的余热,用于城市集中供热来提高热电公司的能源利用率。

1 吸收式热泵原理

热泵是一种制热的设备,该装置以消耗少量电能或其他热能为代价,能将大量的无用低品位热能变为高温热能。热泵在运行过程中,通过蒸发器从低温热源处吸收低品位热量,所以热泵热源对于整个热泵系统很重要。热泵可以利用热源可分为两大类:一是自然界中的热源,如空气,土壤,水(地下水,湖水,河流,海水等),太阳能等;二是生活或工业生产中排放的余热,废热,比如工业废水等。尤其是工业废热利用,此部分废热温度高,来源稳定,是近年余热利用的重心。上述两种热源部属于低温热源,不能直接用于生产或发电,但可以通过热泵来回收利用这部分热量[2]。

热泵根据工作原理、驱动热源、低温热源及其用途有多种分类,我们应用在电厂的热泵为均为溴化锂吸收式热泵。

吸收式热泵的工作原理:工质(水)在真空环境下从低温热源取热后蒸发成蒸汽(温度较低的水蒸汽),利用高浓度溴化锂溶液易吸水的特性,使水蒸气凝结成水放热;随着溴化锂溶液温度升高、浓度变稀,此部分热量可以换热给热网循环水;变稀的溴化锂溶液,通过溶液泵进入浓缩器;在浓缩器中用驱动蒸汽进行加热,将溴化锂溶液中的部分水蒸发出来,使溶液重新变浓。蒸发出来的蒸汽进入再热器中,凝结放热给热网循环水,然后再通过节流阀减温减压,进入取热器从低温热源取热。

【原创论文之二】| 吸收式热泵机组在直接空冷热电厂的应用

图1.1  吸收式热泵原理图

电厂应用的吸收式热泵能效值COP,一般在1.7左右。即利用一份高品位热量(比如0.8MPa的五段抽汽,320℃)做驱动热源,可提取0.7份废热(直接空冷汽轮机排汽(乏汽)或者湿冷机组35℃循环水),得到1.7份中等品味热资源(85℃左右)。

2 技术方案

2.1 项目概况

某热电有限公司建设有2台300MW直接空冷供热机组。汽轮机型号为CZK250/N300-16.7/538/538,铭牌功率为300MW,设计背压17kPa,夏季满发背压34kPa;直接空冷系统设计面积692091m2 ,夏季环境温度33℃时,汽轮机背压34kPa;机组额定采暖抽汽量500t/h,抽汽参数为P=0.4MPa.a, t=248℃。

电厂厂内建有热网首站,设计供热能力660MW,设计流量1000t/h,设计供回水温度130/70℃。

热电厂设计供热能力1320万平米,目前已经达到其设计供热负荷。为了节能减排,增加公司效益,利用热泵技术回收余热后通过原热网首站及管网,向城市供热。改造后供热总规模不变,仍然为660MW。

目前,电厂采暖供热方案为常规供热方案,以汽轮机5段抽汽为汽源,热网首站设在厂区内,(换热系统原理,对应后面的吸收热泵)。供热改造后采用吸收式热泵技术利用余热供热。

2.2 供热方案

根据热电厂实际的热网运行参数,本工程改造后设计供回水温度按115/55℃,热网循环水流量不发生变化。

前置凝汽器所利用的热量为汽轮机乏汽余热,热泵利用的热量为汽轮机抽汽和一部分汽轮机乏汽余热,尖峰加热器利用的热量为汽轮机抽汽。

1、前置凝汽器+溴化锂吸收式热泵+尖峰加热器方案(方案一)。

本方案额定供热工况下外网55.℃热网回水(9458t/h),经前置凝汽器利用乏汽(238t/h)加热到69℃,再进热泵内加热至90℃。系统需利用乏汽147t/h,需要驱动蒸汽208t/h,最后至热网首站,利用420t/h抽汽加热至115℃。整个系统要满足供热要求,总共需抽汽628t/h。

【原创论文之二】| 吸收式热泵机组在直接空冷热电厂的应用

图2.2-1  方案一原理图

每台机组配置1台155MW前置凝汽器+3台38.5MW热泵机组。

2、溴化锂吸收式热泵+尖峰加热器方案(方案二)。

本方案额定供热工况下,外网回水温度为55℃(流量9458t/h),回水进热泵内可被加热至90℃。系统利用乏汽245t/h,需要驱动蒸汽346t/h;最后至热网首站,利用420t/h抽汽加热至115℃,总共需抽汽量766t/h。

【原创论文之二】| 吸收式热泵机组在直接空冷热电厂的应用

图2.2-2  方案二原理图

每台机组配置3台64.5MW热泵机组。

2.3 方案对比

针对方案一和方案二在运行工况及设备的投入的不同,做如下对比:

表2.3 不同供热方案对比表


方案一(前置凝汽器+溴化锂吸收式热泵+尖峰加热器方案)

方案二(溴化锂吸收式热泵+尖峰加热器方案)

总供热量(万GJ)

394

394

乏汽供热量(万GJ)

274

146

乏汽供热占的百分比(%)

70

37

抽汽供热量(万GJ)

120

248

抽汽供热占的百分比(%)

30

63

设备总投资

5900

7700

综合上表中余热利用及设备投资情况,本工程采用方案一。

实施改造后,2台机组供热能力仍为660MW,年供热量394×104GJ ,其中抽汽供热120×104GJ,乏汽供热274×104GJ ,乏汽供热量占全部供热量的70% 。系统年供热需抽汽0.51×106t,相比改造前抽汽1.67×106t,年可节约抽汽1.16×106t,可增加发电量约1.21×108kWh。

2.4 机组运行背压选择分析

为了最大化利用余热和提高全厂热效率,设备选型的原则应为:

1、在热泵和凝汽器能力可以满足供热要求的情况下,只用凝汽器和热泵加热,尖峰加热不投运;

2、满足供热的条件下,尽可能减少对汽轮机发电的影响;

3、优化系统配置,降低工程造价。

考虑溴化锂吸收式热泵的性能限制,该电厂在热网供水温度90℃及以下时全部考虑由凝汽器+热泵供热,尖峰加热只在热网供水温度需求大于90℃时投运。

2.4.1 不同背压下设备选型、分析

根据系统在各背压条件下运行时所需凝汽器和热泵出力情况,计算出不同背压运行时的设备选型、投资及所需抽汽量见下表2.4-1。

表2.4-1  不同背压时设备出力、投资及所需抽气量

背压kPa

凝汽器出力MW

抽汽量

t

热泵出力MW

17

176

687405

396

20

176

666151

363

22

176

642678

341

25

195

621425

308

30

250

562886

264

34

272

523461

231

根据上表中对比,很显然,34kPa背压时具有明显优势,整个采暖季所需抽汽量少。

2.4.2 提高背压后对汽轮机运行影响分析

按34kPa进行设备选型及机组运行,对汽轮机发电有什么影响?

汽轮机出力在机组进汽量一定的条件下,与机组背压、抽汽量等均有关系,在现有条件下进行不同背压、不同抽汽量时汽轮机出力比较很困难。可以换个角度来分析,比较不同背压时的有效余热利用。因为进汽量一定时,进入汽轮机的热量主要分三部分利用,一为汽轮机做功, 二为抽汽供热, 三为乏汽带走。

根据汽机厂资料,以下表2.4-2为不同背压时,汽机纯凝工况的基本情况。

【原创论文之二】| 吸收式热泵机组在直接空冷热电厂的应用

表2.4-2 汽轮机不同背压、纯凝工况基本情况表

在严寒季吸收式热泵余热回收系统在背压34kPa运行条件下,比背压17kPa运行时多回收乏汽余热152t/h。乏汽余热利用时,每1kg乏汽约有2300kJ有效余热利用,如果汽轮机背压提高,应排汽带走的热量要增加,以乏汽利用增加量152t/h计算,余热利用增加349.6GJ/h。不考虑乏汽利用、因抽汽而乏汽量减少因素,按汽轮机16-35kPa排汽量平均值677.5t/h计算,由于机组背压提高而排汽恰需提高258kJ/kg时才可带走349.6GJ 热量。而汽轮机运行背压从16kPa提高到35kPa时排汽始增加约114kJ/kg,远小于258kJ/kg。事实上,汽轮机采暖抽汽,乏汽余热利用后,仅有少部分乏汽通过空冷岛直接散热。

另外,该电厂直接空冷机组夏季设计背压为34kPa,冬季也运行到34kPa不会对汽轮机安全稳定运行产生不利影响。

3 供热改造前后经济性对比

采用常规热网站和前置凝汽器+热泵+尖峰加热器方案的有关计算结果对比如下:

序号

项目

单位

改造前

改造后

备注

1

总供热负荷

MW

660

660


2

前置凝汽器的供热负荷

MW

0

154


3

热泵机组总供热负荷

MW

0

231


4

尖峰加热器供热负荷

MW

660

275


5

前置凝汽器利用的乏汽量

t/h

0

238


6

热泵利用的乏汽量

t/h

0

147


7

供热利用的乏汽总量

t/h

0

385


8

热泵需要的抽汽量

t/h

0

208


9

尖峰加热器需要的抽汽量

t/h

1000

420


10

供热需要的总抽汽量

t/h

1000

628


11

节约蒸汽量

t/h

0

372


12

热泵/尖峰加热器出口水温度

/115

90/115

进口55℃

13

全年总供热量

104GJ

394

394

100天

14

乏汽供热量

104GJ

0

274


15

抽汽供热量

104GJ

394

120


16

全年所需采暖抽汽量

t/a

1672232

510444


17

全年采暖抽汽减少发电量

108kwh

1.75

0.53


18

采暖期发电标煤耗

g/kwh

217

205

额定抽汽工况


4 节能减排分析

4.1 能耗指标

4.1.1 能源消耗种类、数量

本工程供热改造项目,全部实施后,消耗能源为蒸汽、水、电。

1、本项目用能概况见表4.1-1

表4.1-1  用能概况表

主要能

源种类

计量单位

年需要实物量

计算用折标系数

折标煤量(tce)

备注

蒸汽

104GJ

120

34.12kgce/GJ

40944

当量值

37.5kgce/GJ

45000

等价值

电力

104kwh/a

57.6

0.1229kgce/kwh

70.8

当量值

0.350kgce/kwh

201.6

等价值

软化水

104t

0

4.857t/t

0


项目年综合能源消耗总量(tce)

当量值

41014.8


等价值

45201.6


2、本项目产出能源见表4.1-2:

表4.1-2  产出能源表

加工产出

能源种类

单位

实物总量

折标系数

折 标 煤

(tce)

备注

热力

104GJ/a

394

34.12kgce/GJ

134432.8

当量值

394

37.5kgce/GJ

147750

等价值

项目年综合能源产出总量(tce)

当量值

134432.8


等价值

147750


4.1.2 综合能源消耗

综合能耗(当量值)=输入能源(当量值)-产出能源(当量值)

                  =41014.8‐134432.8=-93418tce

综合能耗(等价值)=输入能源(等价值)-产出能源(等价值)

                  =45201.6‐147750=-102548.4tce

本改造项目综合能耗为-93418tce(当量值)、-102548.4tce(等价值),得出本项目为节能项目。

本项目按等价值节标煤量为10.3×104tce/a。

4.2 环境减排分析

本工程实施后,节能减排效益如下:

采用热泵技术利用余热供热每年总共可节约10.3X104t标准煤,相当于减少S02排放量7288.5t,减少C02排放量23.44X104t,减少NOx排放量3526t,减少烟尘排放量3203.5t。

注:1t标准煤的燃烧,便可排放烟尘:29.8kg、S02:67.8kg、NOx:32.8kg、CO2:2180kg。

5 结论

利用吸收式热泵回收空冷热电厂乏汽的余热用于城市供热,相当于在不增加电厂容量、不增加当地污染物排放量以及煤耗和发电量都不变的情况下,扩大了热源的供热能力,提高了电厂的能源利用效率,具有显著的经济效益和良好的社会效益。

参考文献:

(1)李永生. 矸石热电厂循环水余热供暖改造技术及效益分析.中国煤炭工业,2014(05):64-65

(2)李文艳,周岩. 吸收式热泵技术在空冷供热机组中的应用.内蒙古电力技术,2013(3):59-62


作者:

李玉海                  锦州节能热电股份有限公司

崔凤葵 李其奇      北京天时前程自动化工程技术有限公司


声明:

原论文刊登于《区域供热》2017年第六期P82-P88,原题为《吸收式热泵机组在直接空冷热电厂的应用》;本文为原创文章,如需转载,请注明出处


News / 推荐新闻 More
2018 - 09 - 18
一、前言 热管道布置会影响热管道的使用效果,而热管道的应力分析也是安装热管道的重要环节之一。因此,我们对热管道布置和应力分析进行研究很有现实意义,研究的结果将能够进一步的提高热管道的使用效果。 二、热力管道的特性 热力管道除具有一般内压管道的特性外,管道输送热介质时还具有明显的轴向应力和轴向位移,需正确使用各种管托及采取补偿措施来吸收应力和抵消位移。若没有合理的补偿,管道伸缩会受阻,在管道内部引起很大的内力,会破坏焊缝、引起或加速焊缝应力腐蚀,损坏管件、支架、阀门及仪表一次部件等,因此热力管道的重中之重是热力补偿器和管托的设置和安装。常见的补偿有自然补偿和补偿器补偿。自然补偿的补偿量小且管道产生横向位移大,因此采用补偿器进行补偿是行之有效的途径。 三、设计的基本原则 热力管道设计应遵循以下基本原则: 1、满足工艺要求,达到生产需要...
2018 - 09 - 11
随着时代的发展以及国家科技实力的提升,建筑热力系统供暖领域的发展得到了不小的突破与创新,相关科研团队不仅对其中涉及到的供热技术以及数据预测方面的内容进行了深入的研究,还对数据挖掘、负荷预测以及供热系统之间的关系进行了进一步的探讨,从而为适量供热技术的合理应用提供有利条件。但是在实际运作中,供热技术的应用效果还是会受到一些因素的影响而出现问题,需要供热团队对其进行妥善的处理。本篇文章就供热数据挖掘和负荷预测的适量供热技术进行简单的论述,希望能对相关人士的研究有所帮助。 适量供热技术是建筑热力系统运行中重要的部分,对热力系统运行的效率和质量有着重要的意义和影响。在近几年的发展中,很多建筑热力系统科研团队都提高了对适量供热技术的重视与研究。一方面是由于传统的供热技术已经不能很好的满足的现代社会下建筑热力系统的需要,应该对供热技术进行创新与完善。另一方面是由于适量供热技术的应用效果,会受...
2018 - 08 - 27
近日,天时前程智慧热网全集成解决方案凭借丰富的行业案例、雄厚的技术实力和良好的服务保障,最终以绝对的优势成功中标国家电投内蒙古公司  通辽热电有限责任公司:《高温网大数据分析的研究与应用》和《高温网智慧供热系统建设》两个项目,有力地支撑了智慧城市的信息化建设。针对通辽市供热现状,天时前程提出了供热信息化云服务、热网自控的解决方案。旨在通过建设集中、有效的智慧供热系统,取代现有的、小型且低效的供热设备,减少市内空气污染物排放,降低能耗和运营成本,提高生产效率和管理水平。项目建设主要涵盖:• 云平台、热网监控、全网平衡、管理驾驶舱、能耗分析、水力计算等系统建设;• 换热站控制器、调节阀、仪表、热表、变频柜、视频等改造;• 二次网无线远传平衡阀水力平衡系统建设等。该项目是国电投内蒙古能源公司节能改造重点项目,要求当年实施当年投运。实现目标:• 通辽热电高温网生产运行数据的全面监控、统计...
2018 - 08 - 17
在已经结束的济南、大同项目部内训中,20多名技术工程师全程参与培训,通过职业系统培训、专业技术讲解,参训的每个人都对自己的职业规划、技术知识有了全面和深入地了解与掌握。吉林项目部是本次项目团队内训的最终站,依然收到了很好的效果,也获得了项目部同事很高的评价。团队训练:工作中,员工除了学会具体事情的处理方式和技巧之外,更重要的是要能够形成团队战斗力,这是超越于具体技能的历练。员工职业化塑造、职业素养、职业规划培训工程培训:电气安全注意事项,强调安全生产的重要性技术培训:自动化系统集成、SCADA系统概述、智慧能源监控系统人员需要掌握的专业技能等本次巡回培训已结束,但学习还要继续,将获得的知识转化成为自己的思维模式和职业技能,并在这个过程中学会面对和处理问题,才是我们组织本次培训的意义所在。天时前程秉承“专业化队伍提供定制化服务”的宗旨,将继续提高项目工程师的整体素质和能力,为用户提供更高效、...


北京市石景山区永引渠南路18号-互联网产业园 (本部地址)   总机电话: 86 010-68706011
传真:+86 0755-2788 8009
邮编:100089
Copyright ©2017 - 2018 北京天时前程自动化工程技术有限公司
犀牛云提供企业云服务
X
5

电话号码管理

  • 010-68706011/12/13
3

SKYPE 设置

6

二维码管理

1

QQ设置

4

阿里旺旺设置

  • 旺旺客服名称 旺旺客服名称
返回顶部
展开